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ABSTRACT

Purpose The DRG-ÖRG IRP (Deutsche Röntgengesellschaft-

Österreichische Röntgengesellschaft international radiomics

platform) represents a web-/cloud-based radiomics platform

based on a public-private partnership. It offers the possibility

of data sharing, annotation, validation and certification in the

field of artificial intelligence, radiomics analysis, and integra-

ted diagnostics. In a first proof-of-concept study, automated

myocardial segmentation and automated myocardial late

gadolinum enhancement (LGE) detection using radiomic im-

age features will be evaluated for myocarditis data sets.

Materials and Methods The DRG-ÖRP IRP can be used to

create quality-assured, structured image data in combination
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with clinical data and subsequent integrated data analysis and

is characterized by the following performance criteria: Possibi-

lity of using multicentric networked data, automatically calcu-

lated quality parameters, processing of annotation tasks, con-

tour recognition using conventional and artificial intelligence

methods and the possibility of targeted integration of algo-

rithms. In a first study, a neural network pre-trained using

cardiac CINE data sets was evaluated for segmentation of

PSIR data sets. In a second step, radiomic features were ap-

plied for segmental detection of LGE of the same data sets,

which were provided multicenter via the IRP.

Results First results show the advantages (data transparency,

reliability, broad involvement of all members, continuous evo-

lution as well as validation and certification) of this platform-

based approach. In the proof-of-concept study, the neural

network demonstrated a Dice coefficient of 0.813 compared

to the expert's segmentation of the myocardium. In the seg-

ment-based myocardial LGE detection, the AUC was 0.73 and

0.79 after exclusion of segments with uncertain annotation.

The evaluation and provision of the data takes place at the IRP,

taking into account the FAT (fairness, accountability, transpar-

ency) and FAIR (findable, accessible, interoperable, reusable)

criteria.

Conclusion It could be shown that the DRG-ÖRP IRP can be

used as a crystallization point for the generation of further

individual and joint projects. The execution of quantitative

analyses with artificial intelligence methods is greatly facilita-

ted by the platform approach of the DRG-ÖRP IRP, since pre-

trained neural networks can be integrated and scientific

groups can be networked.

In a first proof-of-concept study on automated segmentation

of the myocardium and automated myocardial LGE detection,

these advantages were successfully applied.

Our study shows that with the DRG-ÖRP IRP, strategic goals

can be implemented in an interdisciplinary way, that concrete

proof-of-concept examples can be demonstrated, and that a

large number of individual and joint projects can be realized

in a participatory way involving all groups.

Key Points:
▪ The DRG-ÖRG IRP is a web/cloud-based radiomics plat-

form based on a public-private partnership.

▪ The DRG-ÖRG IRP can be used for the creation of quality-

assured, structured image data in combination with clini-

cal data and subsequent integrated data analysis.

▪ First results show the applicability of left ventricular myo-

cardial segmentation using a neural network and seg-

ment-based LGE detection using radiomic image features.

▪ The DRG-ÖRG IRP offers the possibility of integrating

pre-trained neural networks and networking of scientific

groups.

Citation Format
▪ Overhoff D, Kohlmann P, Frydrychowicz A et al. The Inter-

national Radiomics Platform – An Initiative of the German

and Austrian Radiological Societies. Fortschr Röntgenstr

2020; DOI 10.1055/a-1244-2775

ZUSAMMENFASSUNG

Ziel Die DRG-ÖRG-IRP (Deutsche Röntgengesellschaft-Öster-
reichische Röntgengesellschaft Internationale Radiomics-

Plattform) stellt eine web-/cloudbasierte Radiomics-Plattform

auf Grundlage einer öffentlich-privaten Partnerschaft dar. Sie

bietet die Möglichkeit der gemeinsamen Nutzung von Daten,

Annotation, Validierung und Zertifizierung auf dem Gebiet

der künstlichen Intelligenz, Radiomics-Analyse und integrier-

ten Diagnostik. In einer ersten Proof-of-Concept-Studie soll

die automatisierte Myokardsegmentation sowie die automati-

sierte myokardiale Late-Gadolinum-Enhancement (LGE)-

Detektion mittels radiomischer Bildmerkmale für Myokardi-

tis-Datensätze evaluiert werden.

Material und Methoden Die DRG-ÖRP-IRP kann zur Erstel-

lung qualitätsgesicherter, strukturierter Bilddaten in Kombi-

nation mit klinischen Daten und anschließender integrierter

Datenanalyse genutzt werden und zeichnet sich durch die

folgenden Leistungskriterien aus: Nutzungsmöglichkeit multi-

zentrischer vernetzter Daten, automatisiert berechnete Quali-

tätsparameter, Bearbeitung von Annotationsaufgaben, Kon-

turerkennung mittels herkömmlicher Verfahren sowie

Verfahren der künstlichen Intelligenz und der Möglichkeit

einer gezielten Einbindung von Algorithmen.

In einer ersten Studie wurde ein anhand kardialer CINE-Daten-

sätze vortrainiertes neuronales Netz zur Segmentierung von

PSIR-Datensätzen evaluiert. In einem zweiten Schritt wurden

radiomische Bildmerkmale zur segmentalen Detektion von

LGE der gleichen Datensätze, welche multizentrisch über die

IRP zu Verfügung gestellt wurden, angewendet.

Ergebnisse Erste Ergebnisse zeigen die Vorteile (Datentrans-

parenz, Zuverlässigkeit, breite Einbindung aller Mitglieder,

kontinuierliche Evolution sowie Validierung und Zertifizier-

ung) dieses plattformbasierten Ansatzes auf. In der Proof-of-

Concept-Studie konnte im Vergleich zur Segmentierung des

Myokards durch den Experten das neuronale Netzwerk einen

Dice-Koeffizienten von 0,813 nachweisen. Im Rahmen der

segmentbasierten myokardialen LGE-Detektion ergab sich

ein AUC von 0,73 bzw. ein AUC von 0,79 nach Ausschluss von

Segmenten mit unsicherer Annotation.

Die Auswertung und Bereitstellung der Daten findet auf der

IRP unter Berücksichtigung der FAT-Kriterien (Fairness,

Accountability, Transparency) sowie FAIR-Kriterien (findable,

accessible, interoperable, reusable) statt.

Schlussfolgerung Es konnte gezeigt werden, dass die DRG-

ÖRP-IRP als Kristallisationspunkt für die Generierung weiterer

Einzel- und Verbundprojekte genutzt werden kann. Die

Durchführung von quantitativen Analysen mit Verfahren der

künstlichen Intelligenz wird hierbei durch den Plattforman-

satz der DRG-ÖRP-IRP erheblich erleichtert, da vorab trai-

nierte neuronale Netze integriert und wissenschaftliche Grup-

pen vernetzt werden können.

In einer ersten Proof-of-Concept-Studie zur automatisierten

Segmentation des Myokards sowie zur automatisierten myo-

kardialen LGE-Detektion konnten diese Vorteile erfolgreich

angewendet werden.
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Somit zeigt sich, dass sich mittels der DRG-ÖRP-IRP strate-

gische Ziele interdisziplinär umsetzen, konkrete alltagstau-

gliche Proof-of-Concept-Beispiele aufzeigen sowie möglichst

partizipativ unter Einbindung aller Gruppierungen eine

Vielzahl an Einzel- und Verbundprojekten realisieren lassen.

Introduction

A paradigm shift is currently taking place in modern diagnostic ima-
ging. Radiological findings and reports, for example in the case of
an abnormality in the lung, previously only described a mass with
a suspected diagnosis of lung cancer. Today, machine learning and
the extraction of statistical features make it possible to predict
mutations and micrometastases [1]. In addition to this sub-level
acquired by machine learning and the extraction of statistical fea-
tures, there is a diagnostic meta-level that allows conclusions
regarding treatment response and survival due to interdisciplinary
data integration [2, 3]. Oncology is also undergoing a fundamental
change in previous diagnostic-therapeutic procedures. In the event
of a CT examination showingmultiple metastases, a tissue biopsy at
a location randomly selected based on accessibility was performed.
A treatment decision was then made based on this. Today, it is pos-
sible, at least in principle, to determine the probability of the pres-
ence of a specific mutation based on expanded radiomics analyses
in the entire body. Based on this, metastases identified by radiomics
analysis, for example with the highest risk of intratumoral heteroge-
neity or secondary mutation, can be biopsied in a targeted manner
by interventional radiology [4].

The described often automated extraction of clinically relevant
qualitative and quantitative biomarkers from medical image data
is referred to as radiomics. This term includes various algorithmic
procedures, e. g. classic texture analysis methods as well as artifi-
cial intelligence and machine learning, a subset of artificial intelli-
gence. The radiomics method is based on the interpretation of
medical image data as a data source that far exceeds traditional
visual assessment [5].

Reliable radiomics analysis requires reproducible data proces-
sing and consistent quality assurance as shown by multiple stud-
ies [4]. In addition to the selection of the correct end point, a
combination of reliable segmentation, testing of the stability of
extracted features and trained models is important. It is also es-
sential to report the algorithms used and the performed internal
and external validation including the methodology that was used.
The results of scientific studies to date regarding adherence to
these radiomics quality criteria are sobering: Only 1 of approx.
20 studies is at least 50 % in compliance with the criteria [6].
Thus the additional information acquired from studies published
to date must be viewed with caution despite the euphoria regard-
ing algorithmic image analysis. This criticism is supported by cur-
rent studies on the robustness of radiomics methods, particularly
texture analysis compared to various influencing factors like
measurement protocols and reconstruction methods. In addition,
the rapid development of methods and knowledge presents a
challenge for clinical use [7]. In addition, the clinical routine use
of manual or semiautomated segmentation is currently still lim-
ited due to the time requirement and interobserver variability.

Deep learning methods of the latest generations show poten-
tially better generalization and adaptivity compared to earlier
methods (classic feature extraction in texture analysis) and have
the potential to help with the described limitations [8]. The appli-
cation of deep learning methods requires a comparably large
amount of training data, ideally from various locations, and effi-
cient tools for data annotation.

The associated opportunities as well as the significant challen-
ges were the basis for the international radiomics platform project
(IRPP) initiated by the German Radiological Society. The IRPP is a
cooperative public-private partnership in connection with large
university hospitals, Fraunhofer MEVIS, and industry partners in
the field of medical and information technology. The goal of this
initiative is to generate a not-for-profit, cloud-based analysis plat-
form (International Radiomics Platform, IRP) for the shared use of
data, annotation, validation, and certification in the field of artifi-
cial intelligence, radiomics analysis, and integrated diagnosis. This
is based on a joint consortium agreement analogous to the legal
structures for the research campus model of the Federal Ministry
of Education and Research [9].

The goal of the study is to describe the structure, features, and
possibilities of IRP and to demonstrate the feasibility and initial
results based on cardiac MRI application examples.

Methods

In the currently running DRG-ÖRG IRPP, the web-/cloud-based
radiomics platform is used for creating quality-assured and struc-
tured image data in combination with clinical data and subse-
quent integrated data analysis [10]. The retrospective analysis of
myocarditis patients with at least two MRI examinations at the
time of diagnosis and in the follow-up after six months was used
as a pilot project. The maintenance of myocardial function after
six months was defined as the end point. At present, six university
medicine facilities are participating in the study, all with ethics
committee approval, in order to achieve an initial target size of
approx. 200 cases.

The IRPP is characterized by the following performance crite-
ria:
1. Provision of a cloud-based platform for the standardized and

reliable merging of medical image data and associated infor-
mation from various locations. At present, web upload of al-
ready anonymized image data per drag and drop is available.
The IRP will soon be expanded to include integrated anonymi-
zation performed by the person doing the uploading. Both
de-identification profiles defined in the DICOM standard and
configurable positive lists will be supported. The HL7 FHIR
standard is to be used for the automated upload of non-image
data where possible.
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2. For the quality analysis of image data, quality parameters
regarding signal intensity, homogeneity, and artifacts can be
automatically calculated during data import. In a separate web
application to be integrated in the IRP, the data sets are com-
pared to one another or to a reference database and are ana-
lyzed (▶ Fig. 1). The resulting data can be used to train the
algorithm to detect additional artifacts in subsequently uploa-
ded data sets. Moreover, loaded images can be visually asses-
sed by radiology experts (5-star rating in combination with
structured input screens).

3. Bundling of generic tools for processing a range of annotation
tasks. The annotation results are made directly available for
radiomics and deep learning (e. g. as training data). The plat-
form is highly configurable and expandable so that it can be

quickly adapted for use in new studies. For efficient manual
segmentation of two- and three- dimensional structures, a
dedicated toolbox and contouring workflow were implemen-
ted. Thus, various tools (Freehand, Spline, Brush) for creating
and editing contours and algorithmic support like A) interpo-
lation between contours on layers on which the structure was
not manually drawn and B) refining of rough contours using a
self-optimizing method (snapping) (▶ Fig. 2) are available.
Moreover, innovative interaction concepts were developed to
be able to start the training of a neural network with a few
high-quality labels using sparse labeling techniques and to
iteratively optimize them (▶ Fig. 3).

4. In addition to the use of conventional contour detection algo-
rithms, special artificial intelligence methods are used to allow

▶ Fig. 1 Demonstrator for the visualization and analysis of the quality parameters automatically calculated during data import. The parameters
calculated for a selection of image data, such as the signal-to-noise ratio, can be compared with each other in the demonstrator or, if available, with
a reference value database.

▶ Fig. 2 Various tools (e. g. a brush) are available for drawing contours manually (left). The drawn contours can optionally be optimized automat-
ically. A snapping algorithm adapts a drawn contour to high gradients in the environment. The inaccurately drawn blue contour is thereby conver-
ted into the yellow contour (middle). If a three-dimensional structure is not drawn on all layers, contours on intermediate layers are supplemented
by interpolation (right).

Overhoff D et al. The International Radiomics… Fortschr Röntgenstr | © 2020. Thieme. All rights reserved.

Heart

D
ow

nl
oa

de
d 

by
: A

llg
em

ei
ne

s 
K

ra
nk

en
ha

us
 d

er
 S

ta
dt

 W
ie

n.
 C

op
yr

ig
ht

ed
 m

at
er

ia
l.



improved segmentation on the basis of already annotated
data, e. g. for training neural networks for automated contour
analysis of the endocardium and epicardium. For this purpose
the radiomics platform is linked to the deep learning frame-
work RedLeaf developed by Fraunhofer MEVIS [11]. The IRP
sends newly created or corrected segmentations to a training
server for the training of neural networks. A monitoring tool
connected to RedLeaf makes it possible to monitor the quality
of trained networks. A classification server allows the IRP to
retrieve automatic segmentations for structures that already
have trained networks (▶ Fig. 4).

5. Targeted inclusion of algorithms is possible, e. g. the use of
already trained networks from international algorithm chal-
lenges. For this purpose, the IRPP is cooperating with the
Grand Challenge Platform [12] which organizes algorithmic
comparisons for various medical imaging issues with global
participation. The neural networks being used can be further
optimized by algorithms already trained with large quantities
of data on external servers.

6. Integration of image data and corresponding clinical data as
well as clinical end points. Defined end points can be used in
combination with image data and clinical data as target vari-
ables for modeling statistical models and machine learning
methods, e. g. for predicting treatment response.

7. Multidimensional correlations to the corresponding clinical
or molecular genetic end points (feature maps) can then be
created from the dominant features by machine learning
(▶ Fig. 5).

▶ Fig. 3 Sparse labeling tool that allows different and incomplete classification of objects in the image: everything within a contour is a back-
ground, b unknown, c object, or d an uncertainty region. The areas enclosed by the contour are the object, and everything outside the contour
is background.

▶ Fig. 4 Connection of an application (e. g. IRP) to a training server
including a monitoring tool and to a classification server. The train-
ing server receives original image data together with corresponding
segmentation masks, which were created in the IRP. After receiving
these data, training can be started or an already trained network
(DNN) can be trained interactively. The monitoring tool connected
to the training server monitors the classification accuracy of the
trained network in relation to validation data sets. The classification
server allows the creation of segmentations in real time from the
IRP based on the trained networks.
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These performance criteria were used in initial studies on auto-
nomic segmentation of late gadolinium enhancement (LGE)
sequences and in a second step for detecting LGE via radiomic im-
age features.

Current projects

Two multicenter analyses are currently in progress with the sup-
port of the German Radiological Society:
1. One MRI study regarding the prediction of cardiac function re-

sults (▶ Fig. 6a, b). Data carefully curated by experts are used
as the basis for targeted radiomics analyses and the (further)
development of deeper neural networks. Multicenter data are
evaluated in consensus in this study.

2. One MRI study regarding the evaluation of normal and patho-
logical changes in the wrist at 7 T compared to 3 T (▶ Fig. 7).
The main focus of this study is the comparison of radiological
images at the two field strengths. In addition to the evaluation
of different pathologies, the image quality and presence of
image artifacts are assessed visually. The monocentric data are
evaluated independently by seven people in this study.

Only an initial analysis of the myocardial MRI study is presented in
the following to illustrate the applicability of deep neural net-
works.

Initial results

47 multicenter cardiac MRI data sets at two time points have been
uploaded to the central server for the radiomics analysis. The
study was approved by the ethics committees of the participating
universities. All 47 patients were included in the initial assessment
of the data resulting in a final database of 992 segments to be an-
alyzed (17-segment model of the American Heart Association
[AHA]) (▶ Fig. 8).

The LGE images were acquired 10–15 minutes after intrave-
nous administration of gadolinium-containing contrast agent
using the “inversion recovery gradient echo” (IR-GRE) pulse se-
quence. The inversion time (TI) was optimized per patient using a
TI scout sequence and was typically between 250 and 300ms. The
phase image of the “phase-sensitive inversion recovery” (PSIR)
sequence on the short axis was analyzed for the analysis. The field
strength of the MRI scanners was 1.5 and 3 Tesla and the slice
thickness of the PSIR sequences was 6–8mm.

To date, automated segmentation of late enhancement (LGE)
data has been established as the first result of the initial applica-
tion examples. This was performed in two steps: (i) Automated
myocardial segmentation via deep learning (2D U-Net architec-
ture [13] with four layers) (▶ Fig. 9) and subsequent (ii) detection
of LGE using a Random Forest Classifier.

The LGE (PSIR) data were initially segmented manually by an
expert (radiology specialist with more than 5 years of cardiac ima-

▶ Fig. 5 IRP radiomics analysis: For a selected structure (myocardium: volume within the epicardium minus volume within the endocardium) and
selected cases, radiomic features are calculated. A heat map displays these features and, if necessary, further clinical parameters or parameters
calculated in IPR (here exemplary lvef_mrt: left ventricular ejection fraction) after clustering. Currently, these results can be downloaded for further
analysis.
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ging experience) to generate training data. Using an existing algo-
rithm for the segmentation of “steady state free precession”
(SSFP)-CINE data sets, the neural network was further trained on
the basis of the manually segmented LGE data. A neural network
that was pre-trained and evaluated with SSFP-CINE data and real
time data from 113 patients was used. 80% of 75 data sets from
41 patients (992 frames) were then used to adapt the pre-trained
neural network to PSIR data sets. A further 10% of the PSIR data
was used for validation and the remaining 10% for testing. This
resulted in two classifiers that could be sequentially used for the
data. The first classifier identifies an approximate bounding box
around the left ventricle and the second classifier segments the
myocardium (region between the epicardial and endocardial bor-

der) within this bounding box. The Dice coefficient was deter-
mined as a quality criterion for the agreement between the seg-
mentation by the expert and the myocardial segmentation by
the neural network. This similarity coefficient indicates both the
spatial overlapping and the reproducibility with a Dice coefficient
of 1 thus representing complete overlapping or agreement and a
value of 0 indicating a lack of agreement [14]. Based on the test
data, a Dice coefficient of 0.813 for the myocardium was able to
be shown in comparison to the segmentation by the expert. The
Dice coefficient for the blood pool (region within the endocardial
border) was 0.941.

In the next step the LGE areas were identified by the radiology
expert and allocated to the segments of the 17-segment model of

▶ Fig. 6 a IRP configured for the myocarditis study. b CINE-SSFP short-axis view through the left and right ventricle. Example of erroneous seg-
mentation of the initial ML-based algorithm, underlining the need for “supervised learning” even for supposedly simple segmentation tasks. Fluid-
filled stomach with thick musculature is misinterpreted by the algorithm as the left ventricular myocardium.

▶ Fig. 7 IRP configured for the 3 T/7 T wrist study.
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the AHA classification to be evaluated on the short-axis views and
the corresponding segments were classified as LGE positive or
negative. The LGE was visually evaluated by the radiology expert

for every segment regarding diagnostic reliability on a three-point
Likert scale (1 = low; 2 = average; 3 = high).

Based on this, a study was performed to examine how well late
enhancement in individual segments can be detected by radiomic
image features. The software library integrated in the IRP (PyRa-
diomics) [15] was used to calculate a large number of standard-
ized features. Features derived from the intensities and cor-
responding histograms (features of the first order) and texture
features whose calculation included the relationship between
multiple voxels (features of a higher order) were included in the
analysis. A Random Forest Classifier was used for detecting late
enhancement on the basis of these features. The analysis was per-
formed as 10-fold cross-validation with all segments of one
patient being assigned to the same group.When using all 992 seg-
ments including 408 cases of late enhancement resulted in an
average AUC of 0.73. After exclusion of 226 segments with un-
reliable annotation (points 1 and 2 on a Likert scale of 1 to 3
(▶ Fig. 8)), the average AUC was 0.79 (ROC curve in ▶ Fig. 10). At
an optimal cut-off value according to the Youden index, this resul-
ted in a sensitivity of 0.62 and a specificity of 0.83. For a sensitivity
of 0.8, the specificity would have to be reduced to 0.58. The most
important features for this classifier were the average value of the
original image and the quantile after application of a Laplacian-of-
Gaussian filter to detect edges. Additional experiments showed
that prior automated univariate feature selection based on a var-
iance analysis did not provide added value.

▶ Fig. 8 Flowchart of the study population with inclusion and exclusion criteria.

▶ Fig. 9 Comparison of the segmentation by the expert (upper
row) and the DNN (lower row). The data set shown was withheld
from the DNN in training. In the left column, a slight pericardial
effusion complicates the segmentation.
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Discussion

The IRP meets the requirements for a radiology society: imple-
mentation of strategic goals in a particularly dynamic area in an
interdisciplinary manner, concrete proof-of-concept examples
and results suitable for the daily routine, and promotion of a num-
ber of individual and joint projects in an ideally participatory man-
ner with inclusion of all groups.

The initial use of the IRP for an important clinical question with
respect to cardiac imaging shows the significant advantages of
this platform-based approach with respect to researching and
developing new methods of artificial intelligence:
1. Data transparency: The upload of data, quality assurance, and

user access by scientific professional societies ensures high
transparency in data analysis using artificial intelligence methods.

2. Reliability: The annotation needed for artificial intelligence
methods and thus the “curating” of data can be performed in a
multicenter manner by specially selected experts resulting in
standardized data sets with the maximum level of quality as-
surance.

3. Broad inclusion of all members: As a result of the project-based
accessibility via the scientific societies, all professional groups
with different scientific and clinical interests can define pro-
jects and the corresponding end points.

4. 4. Continuous evolution: By including algorithm challenges on
the platform, the AI methods can be optimized by the interna-
tional community in friendly competition.

5. 5. Validation and certification: As a result of the quality-as-
sured control of points 1–4, the scientific societies can validate
the algorithms, publish the results on accuracy, reproducibil-
ity, and particularly generalizability, and receive certification
for clinical use from the corresponding institutions (e. g. TÜV).

This approach also satisfies the FAT criteria (fairness, accountabil-
ity, and transparency) with respect to ethical aspects when using
artificial intelligence for data analysis since data transparency is
ensured by the multilateral consortium partnership, the responsi-
bility for the data is ensured by the annotation by appointed
experts, and shared availability is ensured by the not-for-profit
approach [16]. In particular, the IRPP supports the FAIR criteria
by ensuring that the data are consistently findable, accessible,
interoperable, and reusable [17]. Particularly regarding interoper-
ability, additional effort, for example in the context of the Nation-
al Research Data Infrastructure, is needed. A main aspect here is
the ability to explain the results in relation to the actual perform-
ance and the possible random or systematic deviations resulting
from the use of artificial intelligence for specific medical issues.
This can be achieved only be precisely defining the basic medical
conditions and carefully selecting the resulting end points for
testing the neural network.

Cardiac MRI in patients with myocarditis was selected as the
first proof-of-concept study. Cardiac MRI is particularly attractive
for data analysis using the IRP since it allows the acquisition of
standardized, examiner-independent image data and the quanti-
tative calculation of left- and right-ventricular function param-
eters [18, 19]. This requires segmentation of the endocardium
and epicardium in SSFP-CINE sequences. This contouring is time-
intensive and examiner-dependent. Semiautomated and automa-
ted methods result in significant optimization of the daily work-
flow as well as further standardization [20–23]. This standardiza-
tion is an important quality criterion particularly with respect to
radiomics analyses [4, 24]. In addition, the clinical picture of myo-
carditis is particularly suitable for analysis with modern cardiac
MRI methods since the quantitative parameters of heart function
and inflammatory tissue change in combination with clinical
parameters in a standardized, systematic analysis allow a high
degree of accuracy with respect to diagnosis and differential diag-
nosis [25, 26] and statements regarding patient prognosis. In the
present study, a neural network was trained and validated with
respect to the automated endocardial and epicardial segmenta-
tion of PSIR sequences after the application of contrast agent.
Manual contouring by a radiology expert served as a reference.
The neural network was previously evaluated with a different se-
quence type, namely SSFP-CINE sequences for cardiac volumetry
and cardiac function analysis. The Dice coefficient, a commonly
used parameter for comparing the overlapping of segmentations,
was calculated to measure agreement.

Previous studies on automated segmentation of the left ventri-
cle usually used CINE sequences. A meta-analysis of earlier “deep
learning” neural networks showed an mean Dice coefficient of
0.965 for endocardial left-ventricular contour detection. Isensee
et al. achieved the highest Dice coefficient (0.968) among all
available studies [27]. The neural network used here yielded sim-
ilar values. In comparison to threshold-based methods, improved
overlapping of the generated segmentation with the “ground
truth”, i. e., manual segmentation by an experienced radiologist,
was already able to be shown. For example, the values for endo-
cardial segmentation of the left ventricle in SSFP-CINE sequences
are 0.88–0.89 [28, 29].

▶ Fig. 10 ROC curves of the Random Forest Classifier for LGE clas-
sification (middle ROC curve bold, ROC curves of the 10-fold cross-
validation transparent).
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In 2015, Tao et al. were able to achieve a Dice coefficient of
0.81 with an automated segmentation method for contrast-en-
hanced data sets [30], which is in accordance with value in our
study. In general, it must be taken into consideration that cases
of myocarditis in which the LGE distribution pattern is typically
epicardial or intramyocardial were examined in our study. In com-
parison to previous studies, this inevitably results in more difficult
epicardial contour detection. The lower agreement for the myo-
cardium compared to previous studies is due to the small test
population for neural networks. A significant improvement can
be expected here particularly because of the international radio-
mics platform.

In a second approach automated segmental LGE detection
(17-segment model of the American Heart Association [AHA])
for PSIR sequences can be analyzed using a Random Forest Classi-
fier. The Random Forest Classifier had an AUC of 0.71 in the ROC
curve analysis for segmental LGE detection. Under consideration
of the segments that could be evaluated by the expert with high
diagnostic reliability using a Likert scale (Likert scale = 3), an im-
proved AUC of 0.77 was seen in the further analysis. Further ana-
lyses by the author team are currently targeting the use of the
trained neural network and the Random Forest Classifier for the
automated diagnosis of myocarditis and differentiation from nor-
mal findings and other myocardial pathologies. The systematic
annotation of all image data with the corresponding clinical data
required for this purpose is currently in the final stage.

A potential advantage of a neural network is that “contamina-
tion” by light pixels on the segment border between the endoca-
vitary blood pool and the endocardium as a typical problem in
threshold-based methods may be able to be avoided thus possibly
resulting in fewer misclassifications of LGE areas. This also seems
to be proven by current publications on the topic. Therefore, in a
study published in 2019, analysis using deep neural learning has
the lowest variance of less than 10% compared to the “ground
truth” in Bland-Altman plots, while the variance in the case of
threshold-based methods was over 20% [31]. A current publica-
tion in Radiology also shows that texture analyses on the basis of
already preprocessed data, e. g. with T1 and T2 mapping, allows
significantly better classification of patients with myocarditis [32].

To use the IRP as a crystallization point for the generation of
further individual and joint projects, routine functionality that
makes accumulation, annotation, and evaluation of data as simple
as possible and allows continuous and uncomplicated integration
of technical innovations must be ensured. The platform approach
of the IRP greatly facilitates and accelerates the implementation
of quantitative analyses with artificial intelligence methods. There
are four main reasons for this:
1. Pre-trained neural networks based on other data sets can be

transferred to related issues on the International Radiomics
Platform thereby significantly shortening the time needed for
further iterative refining to maximum precision (transfer
learning).

2. As a result, scientific groups with a similar focus can be net-
worked thereby forming interactive value added chains so that
as many scientific questions as possible can be processed while
building on each other.

3. (Inter)national networking and the associated increase in data
available for the validation of neural networks increases the
precision of the networks and allows them to be continuously
optimized as required by international professional societies
[33]. In addition to the retrospective analysis of already exist-
ing data sets, a prospective approach for standardized acquisi-
tion and evaluation with respect to the most important
parameters to be expected must also be possible.

4. The IRP continues to offer interfaces to other data platforms of
large national and international consortia, e. g., the joint ima-
ging platform of the German Cancer Consortium, for targeted
radiomics analyses in oncological studies .

To further educate as many young scientists and established radi-
ologists as possible with respect to artificial intelligence methods,
a white paper was published by the German Radiological Society
based on an interdisciplinary workshop held in 2016 [34]. This re-
quires targeted new alliances between radiologists, computer sci-
entists, mathematicians, and related clinical disciplines [35]. A key
component here is the planned junior research academy for train-
ing and continuing education in the field of artificial intelligence
methods.

CLINICAL RELEVANCE

▪ The DRG-ÖRG IRP project is a web-/cloud-based radiomics

platform based on a public-private partnership.

▪ The DRG-ÖRG-IRP facilitates, accelerates, and more pre-

cisely defines the implementation of quantitative analyses

via artificial intelligence.

▪ Initial study results of the DRG-ÖRG IRP regarding auto-

mated myocardial segmentation using a neural network

and automated detection of myocardial LGE based on

radiomic features show the usability of the platform.

▪ The DRG-ÖRG IRP allows the transfer of pre-trained neural

networks to the platform and networking of scientific

groups.

Glossary

Cloud
IT resource for storing or processing data made available remotely
in a location-independent manner via Internet or intranet.

Bounding box
Tool for object detection. A square (2D) or a box (3D) is generated
around the object to be identified. More precise (automated) seg-
mentation can be performed within the square/box based on this.

Brush
Tool for segmentation/contouring of anatomical structures. Using
a graphic circle (brush) with an adjustable diameter, the structure
is segmented along the outer brush edge. (▶ Fig. 2 [left])
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Deep learning
Deep learning is a subfield of machine learning using deep neural
networks.

Dice
The Dice coefficient (DSC) is a similarity coefficient and indicates
both the spatial overlapping and the reproducibility, with a Dice
coefficient of 1 representing complete overlapping or agreement
and a value of 0 indicating a lack of agreement. The Dice coeffi-
cient is calculated as follows: DSC(A,B) = 2(A∩B)/(A+B) with ∩

being the intersection [14].

Feature heat map
Graphic representation of radiomic image features after applica-
tion of a clustering method. With suitable color coding, the fea-
ture heat map provides visual representation of high correlations
among radiomic features (and possibly clinical parameters).

Freehand
Tool for segmentation/contouring of anatomical structures. Seg-
mentation is performed via freehand drawing along the structure
to be segmented.

Snapping
Correction mode for manually drawn contours. The drawn con-
tour optionally adjusts automatically per algorithm to the signifi-
cant nearby object borders of the structure to be segmented.
(▶ Fig. 2 [middle])

Cross-validation
Cross-validation refers to a method in which a subset of the data
sets is used for training a model and another subset of the data
sets is made available for evaluation of the trained network. There
are various approaches like K-fold cross-validation or LOOCV
(Leave-One-Out Cross-Validation), which are not discussed in
greater detail here.

Laplacian-of-Gaussian filter (LoG filter)
This is an image processing filter used for detecting edges.

Sparse labeling technique
This technique can be used to provide local information regarding
what is part of the desired structure instead of performing exact
contouring of structures. (▶ Fig. 3)

Random Forest Classifier
This is a machine learning method in which multiple decision trees
are generated from subsets of the training data set. The decisions
of each individual decision tree are aggregated and the classifica-
tion with the most votes is defined as the final classification.

PyRadiomics
PyRadiomics is an open-source software package that can be used
to extract radiomic features from medical images.

Spline
Tool for segmentation/contouring of anatomical structures. Con-
trol points are set along the structure to be segmented. An algo-
rithm interpolates between the control points.

RedLeaf
RedLeaf (Remote Deep Learning Framework). This is a software
solution developed by Fraunhofer MEVIS for training, testing, and
applying deep neural networks.
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